Gaps between zeros ofζ(s)and the distribution of zeros ofζ′(s)
نویسندگان
چکیده
منابع مشابه
Large Gaps between the Zeros of the Riemann Zeta Function
If the Riemann hypothesis (RH) is true then the non-trivial zeros of the Riemann zeta function, ζ(s), satisfy 1/2+iγn with γn ∈ R. Riemann noted that the argument principle implies that number of zeros of ζ(s) in the box with vertices 0, 1, 1 + iT, and iT is N(T ) ∼ (T/2π) log (T/2πe). This implies that on average (γn+1 − γn) ≈ 2π/ log γn and hence the average spacing of the sequence γ̂n = γn lo...
متن کاملLarge gaps between consecutive zeros of the Riemann zeta-function
Combining the mollifiers, we exhibit other choices of coefficients that improve the results on large gaps between the zeros of the Riemann zeta-function. Precisely, assuming the Generalized Riemann Hypothesis (GRH), we show that there exist infinitely many consecutive gaps greater than 3.0155 times the average spacing.
متن کاملGaps between consecutive zeros of the Riemann zeta-function
An important problem in number theory is to study the distribution of the non-trivial zeros of the Riemann zeta-function which, if one is willing to assume the Riemann Hypothesis, all lie on a vertical line. It is relatively easy to count how many of these zeros lie in a large interval, so the average spacing between consecutive zeros is easy to compute. However, it is a difficult and interesti...
متن کاملStructural Zeros versus Sampling Zeros
Probabilistic sequence models estimated from large corpora typically require smoothing techniques to reserve some probability mass for unobserved events. These techniques fail to distinguish between events unobserved due to sampling limitations, sampling zeros, and those unobserved due to structural reasons such as syntactic constraints, structural zeros. We investigate the use of statistical t...
متن کاملGaps between Zeros of the Derivative of the Riemann Ξ-function
Abstract. Assuming the Riemann hypothesis, we investigate the distribution of gaps between the zeros of ξ(s). We prove that a positive proportion of gaps are less than 0.796 times the average spacing and, in the other direction, a positive proportion of gaps are greater than 1.18 times the average spacing. We also exhibit the existence of infinitely many normalized gaps smaller (larger) than 0....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2014
ISSN: 0001-8708
DOI: 10.1016/j.aim.2014.02.010